Ogstn Sem/CHEM(H)/T/19

2019

B.Sc. (Honours)

5th Semester Examination

CHEMISTRY

Paper - C11T

Inorganic Chemistry - IV

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) Explain the abnormal magnetic moment of $Cu_2(acac)_4 \cdot (H_2O)_2$ complex.
- (b) The $\left[\text{Ni}(\text{CN})_4\right]^{2-}$ ion is square planar whereas $\left[\text{NiCl}_4\right]^{2-}$ is tetrahedral Explain.

[Turn Over]

Scanned by TapScanner

- (c) Explain the composition of the following complexes $[CuF_6]^{3-}$ and $[AuF_4]^{-}$.
- (d) The complex $\left[\text{Co}(\text{H}_2\text{O})_6\right]^{2+}$ is light pink whereas $\left[\text{COCl}_4\right]^{2-}$ is deep blue Explain.
- (e) Explain the order of LMCT energies for the following anions —

$$MnO_4^-$$
, CrO_4^{2-} , VO_4^{3-} .

- (f) Calculate the value of magnetic moment for high spin and low spin complex of Cr²⁺.
- (g) What change in magnetic properties can be expected when NO_2^- ligand in $\left[Co(NO_2)_6^{3-}\right]^{3-}$ are replaced by Cl^- ligand?
- (h) Actinides have high complex formation ability than lanthanides — Explain.

(3) Group - B

		Answer any four questions: 5×4=20	
2	. (a)	Draw the orgel diagram for $\left[\text{Ni}(\text{H}_2\text{O})_6\right]^{2+}$ complex and calculate the value of Δ_0 .	
	(b)	High spin octahedral complexes of Co(II) have magnetic moments much higher than the spin-only values on the other hand, the low spin complexes of Co(II) have magnetic moment slightly higher than the spin only values — Comment. 2	
3.	(a)	What type of electronic transitions are responsible for colour of lanthanides?	
	(b)	In general UV visible absorption bands of transition metal complex are unsymmetric and	
		broad, whereas those of lanthanoid ion (Ln+3)	
		complexes are sharp — Explain. 2	
	(c)	Identify the Ground State term symbol for	r
		D_y^{3+} ion.	2
1.	(a)	Define Russel-Saunder's Coupling.	2
	(b)	With the help of CFT predict the structures of Co_3O_4 and Fe_3O_4 .	of 3

I Turn Over 1

Scanned by TapScanner

5. (a)
$$\left[\text{Co(NH}_3)_6\right]^{3+}$$
 $\Delta_0 = 23,000 \text{ cm}^{-1}$

$$\left[\text{Rh}(\text{NH}_3)_6\right]^{3+}$$
 $\Delta_0 = 34,000 \text{ cm}^{-1}$

$$\left[\text{Ir}(NH_3)_6\right]^{3+}$$
 $\Delta_0 = 41,000 \text{ cm}^{-1}$

— Justify the trend.

2

(b) State John-Teller Theorem. In which of the following electronic configuration this effect would be observed —

$$t_{2g}^{3} e_{g}^{1} \text{ or } t_{2g}^{6} e_{g}^{2}$$
 1+2

- (a) Explain the variation of hydration energies of the divalent 3d series transition metal halides.
 - (b) K₂[NiF₆] is diamagnetic while K₃[CoF₆] is paramagnetic though both have same 'd' configuration — Explain on the basis of CFT.

2

Write down the correct order of enthalpies of hydration of Ca⁺², Mn⁺² and Zn⁺².

Scanned by TapScanner

- 7. (a) Explain the Ion exchange method for separation of lanthanides.
 - (b) What do you mean by "Mischmetal"?

Group - C

Answer any one question:

 $10 \times 1 = 10$

8. (a) What are magnetically dilute and magnetically concentrated substances? Give example of each.

(b) $\left[\text{Ni}(\text{H}_2\text{O})_6 \right]^{2+} + 3\text{en} \longrightarrow \left[\text{Ni}(\text{en})_3 \right]^{2+}$

$$\left[\operatorname{Cu}(H_2O)_6\right]^{2+} + 3\operatorname{en} \longrightarrow \left[\operatorname{Cu}(H_2O)_2(\operatorname{en})_2\right]^{2+}$$

but not
$$\left[\text{Cu(en)}_3 \right]^{2+}$$

For the 1st case complete substitution occurs but in the 2nd case Partial Substitution occurs. — Explain.

- (c) The colour of trans $\left[\operatorname{Co}(\operatorname{en})_2 \operatorname{F}_2\right]^+$ is less intense than that of ci s $\left[\operatorname{Co}(\operatorname{en})_2 \operatorname{F}_2\right]^+$ Explain.
- (d) The Brown ring compound $\{[Fe(H_2O)_5 NO]SO_4\}$ exhibits magnetic moment $(\mu) = 3.9 \text{ BM}$. Find the oxidation state of Fe in this compound.
- 9. (a) Explain why OH⁻ is a weak field ligand than H₂O.
 - (b) The absorption spectrum of $\left[\text{Ti}(\text{H}_2\text{O})_6\right]^{3+}$ shows one unsymmetrical broad band Explain.
 - (c) Ionic radius of $\left[V(H_2O)_6\right]^{2+}$ is larger than the $\left[Mn(H_2O)_6\right]^{+2}$ Explain. (2)
 - (d) F is a weak field ligand whereas CN is a strong field ligand. Explain on the basis of LFT.
 - (e) Why do actinides show higher oxidation state than lanthanides?