Ogstn Sem/CHEM(H)/T/19 2019 B.Sc. (Honours) 5th Semester Examination ## CHEMISTRY Paper - C11T ## Inorganic Chemistry - IV Full Marks: 40 Time: 2 Hours The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. ### Group - A 1. Answer any five questions: $2 \times 5 = 10$ - (a) Explain the abnormal magnetic moment of $Cu_2(acac)_4 \cdot (H_2O)_2$ complex. - (b) The $\left[\text{Ni}(\text{CN})_4\right]^{2-}$ ion is square planar whereas $\left[\text{NiCl}_4\right]^{2-}$ is tetrahedral Explain. [Turn Over] Scanned by TapScanner - (c) Explain the composition of the following complexes $[CuF_6]^{3-}$ and $[AuF_4]^{-}$. - (d) The complex $\left[\text{Co}(\text{H}_2\text{O})_6\right]^{2+}$ is light pink whereas $\left[\text{COCl}_4\right]^{2-}$ is deep blue Explain. - (e) Explain the order of LMCT energies for the following anions — $$MnO_4^-$$, CrO_4^{2-} , VO_4^{3-} . - (f) Calculate the value of magnetic moment for high spin and low spin complex of Cr²⁺. - (g) What change in magnetic properties can be expected when NO_2^- ligand in $\left[Co(NO_2)_6^{3-}\right]^{3-}$ are replaced by Cl^- ligand? - (h) Actinides have high complex formation ability than lanthanides — Explain. # (3) Group - B | | | Answer any four questions: 5×4=20 | | |----|-------|--|---------| | 2 | . (a) | Draw the orgel diagram for $\left[\text{Ni}(\text{H}_2\text{O})_6\right]^{2+}$ complex and calculate the value of Δ_0 . | | | | (b) | High spin octahedral complexes of Co(II) have magnetic moments much higher than the spin-only values on the other hand, the low spin complexes of Co(II) have magnetic moment slightly higher than the spin only values — Comment. 2 | | | 3. | (a) | What type of electronic transitions are responsible for colour of lanthanides? | | | | (b) | In general UV visible absorption bands of
transition metal complex are unsymmetric and | | | | | broad, whereas those of lanthanoid ion (Ln+3) | | | | | complexes are sharp — Explain. 2 | | | | (c) | Identify the Ground State term symbol for | r | | | | D_y^{3+} ion. | 2 | | 1. | (a) | Define Russel-Saunder's Coupling. | 2 | | | (b) | With the help of CFT predict the structures of Co_3O_4 and Fe_3O_4 . | of
3 | I Turn Over 1 Scanned by TapScanner 5. (a) $$\left[\text{Co(NH}_3)_6\right]^{3+}$$ $\Delta_0 = 23,000 \text{ cm}^{-1}$ $$\left[\text{Rh}(\text{NH}_3)_6\right]^{3+}$$ $\Delta_0 = 34,000 \text{ cm}^{-1}$ $$\left[\text{Ir}(NH_3)_6\right]^{3+}$$ $\Delta_0 = 41,000 \text{ cm}^{-1}$ — Justify the trend. 2 (b) State John-Teller Theorem. In which of the following electronic configuration this effect would be observed — $$t_{2g}^{3} e_{g}^{1} \text{ or } t_{2g}^{6} e_{g}^{2}$$ 1+2 - (a) Explain the variation of hydration energies of the divalent 3d series transition metal halides. - (b) K₂[NiF₆] is diamagnetic while K₃[CoF₆] is paramagnetic though both have same 'd' configuration — Explain on the basis of CFT. 2 Write down the correct order of enthalpies of hydration of Ca⁺², Mn⁺² and Zn⁺². Scanned by TapScanner - 7. (a) Explain the Ion exchange method for separation of lanthanides. - (b) What do you mean by "Mischmetal"? #### Group - C Answer any one question: $10 \times 1 = 10$ 8. (a) What are magnetically dilute and magnetically concentrated substances? Give example of each. (b) $\left[\text{Ni}(\text{H}_2\text{O})_6 \right]^{2+} + 3\text{en} \longrightarrow \left[\text{Ni}(\text{en})_3 \right]^{2+}$ $$\left[\operatorname{Cu}(H_2O)_6\right]^{2+} + 3\operatorname{en} \longrightarrow \left[\operatorname{Cu}(H_2O)_2(\operatorname{en})_2\right]^{2+}$$ but not $$\left[\text{Cu(en)}_3 \right]^{2+}$$ For the 1st case complete substitution occurs but in the 2nd case Partial Substitution occurs. — Explain. - (c) The colour of trans $\left[\operatorname{Co}(\operatorname{en})_2 \operatorname{F}_2\right]^+$ is less intense than that of ci s $\left[\operatorname{Co}(\operatorname{en})_2 \operatorname{F}_2\right]^+$ Explain. - (d) The Brown ring compound $\{[Fe(H_2O)_5 NO]SO_4\}$ exhibits magnetic moment $(\mu) = 3.9 \text{ BM}$. Find the oxidation state of Fe in this compound. - 9. (a) Explain why OH⁻ is a weak field ligand than H₂O. - (b) The absorption spectrum of $\left[\text{Ti}(\text{H}_2\text{O})_6\right]^{3+}$ shows one unsymmetrical broad band Explain. - (c) Ionic radius of $\left[V(H_2O)_6\right]^{2+}$ is larger than the $\left[Mn(H_2O)_6\right]^{+2}$ Explain. (2) - (d) F is a weak field ligand whereas CN is a strong field ligand. Explain on the basis of LFT. - (e) Why do actinides show higher oxidation state than lanthanides?